47 research outputs found

    A Type-Directed Negation Elimination

    Full text link
    In the modal mu-calculus, a formula is well-formed if each recursive variable occurs underneath an even number of negations. By means of De Morgan's laws, it is easy to transform any well-formed formula into an equivalent formula without negations -- its negation normal form. Moreover, if the formula is of size n, its negation normal form of is of the same size O(n). The full modal mu-calculus and the negation normal form fragment are thus equally expressive and concise. In this paper we extend this result to the higher-order modal fixed point logic (HFL), an extension of the modal mu-calculus with higher-order recursive predicate transformers. We present a procedure that converts a formula into an equivalent formula without negations of quadratic size in the worst case and of linear size when the number of variables of the formula is fixed.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Model-Checking the Higher-Dimensional Modal mu-Calculus

    Full text link
    The higher-dimensional modal mu-calculus is an extension of the mu-calculus in which formulas are interpreted in tuples of states of a labeled transition system. Every property that can be expressed in this logic can be checked in polynomial time, and conversely every polynomial-time decidable problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined in the higher-dimensional modal mu-calculus. We exemplify the latter connection by giving several examples of decision problems which reduce to model checking of the higher-dimensional modal mu-calculus for some fixed formulas. This way generic model checking algorithms for the logic can then be used via partial evaluation in order to obtain algorithms for theses problems which may benefit from improvements that are well-established in the field of program verification, namely on-the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and games.Comment: In Proceedings FICS 2012, arXiv:1202.317

    Internal Calculi for Separation Logics

    Get PDF
    We present a general approach to axiomatise separation logics with heaplet semantics with no external features such as nominals/labels. To start with, we design the first (internal) Hilbert-style axiomatisation for the quantifier-free separation logic SL(?, -*). We instantiate the method by introducing a new separation logic with essential features: it is equipped with the separating conjunction, the predicate ls, and a natural guarded form of first-order quantification. We apply our approach for its axiomatisation. As a by-product of our method, we also establish the exact expressive power of this new logic and we show PSpace-completeness of its satisfiability problem

    Buffered Simulation Games for B\"uchi Automata

    Full text link
    Simulation relations are an important tool in automata theory because they provide efficiently computable approximations to language inclusion. In recent years, extensions of ordinary simulations have been studied, for instance multi-pebble and multi-letter simulations which yield better approximations and are still polynomial-time computable. In this paper we study the limitations of approximating language inclusion in this way: we introduce a natural extension of multi-letter simulations called buffered simulations. They are based on a simulation game in which the two players share a FIFO buffer of unbounded size. We consider two variants of these buffered games called continuous and look-ahead simulation which differ in how elements can be removed from the FIFO buffer. We show that look-ahead simulation, the simpler one, is already PSPACE-hard, i.e. computationally as hard as language inclusion itself. Continuous simulation is even EXPTIME-hard. We also provide matching upper bounds for solving these games with infinite state spaces.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Model-Checking Process Equivalences

    Full text link
    Process equivalences are formal methods that relate programs and system which, informally, behave in the same way. Since there is no unique notion of what it means for two dynamic systems to display the same behaviour there are a multitude of formal process equivalences, ranging from bisimulation to trace equivalence, categorised in the linear-time branching-time spectrum. We present a logical framework based on an expressive modal fixpoint logic which is capable of defining many process equivalence relations: for each such equivalence there is a fixed formula which is satisfied by a pair of processes if and only if they are equivalent with respect to this relation. We explain how to do model checking, even symbolically, for a significant fragment of this logic that captures many process equivalences. This allows model checking technology to be used for process equivalence checking. We show how partial evaluation can be used to obtain decision procedures for process equivalences from the generic model checking scheme.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    On Symbolic Heaps Modulo Permission Theories

    Get PDF
    We address the entailment problem for separation logic with symbolic heaps admitting list pred- icates and permissions for memory cells that are essential to express ownership of a heap region. In the permission-free case, the entailment problem is known to be in P. Herein, we design new decision procedures for solving the satisfiability and entailment problems that are parameterised by the permission theories. This permits the use of solvers dealing with the permission theory at hand, independently of the shape analysis. We also show that the entailment problem without list predicates is coNP-complete for several permission models, such as counting permissions and binary tree shares but the problem is in P for fractional permissions. Furthermore, when list predicates are added, we prove that the entailment problem is coNP-complete when the entail- ment problem for permission formulae is in coNP, assuming the write permission can be split into as many read permissions as desired. Finally, we show that the entailment problem for any Boolean permission model with infinite width is coNP-complete

    Separability in the Ambient Logic

    Get PDF
    The \it{Ambient Logic} (AL) has been proposed for expressing properties of process mobility in the calculus of Mobile Ambients (MA), and as a basis for query languages on semistructured data. We study some basic questions concerning the discriminating power of AL, focusing on the equivalence on processes induced by the logic (=L>)(=_L>). As underlying calculi besides MA we consider a subcalculus in which an image-finiteness condition holds and that we prove to be Turing complete. Synchronous variants of these calculi are studied as well. In these calculi, we provide two operational characterisations of =L_=L: a coinductive one (as a form of bisimilarity) and an inductive one (based on structual properties of processes). After showing =L_=L to be stricly finer than barbed congruence, we establish axiomatisations of =L_=L on the subcalculus of MA (both the asynchronous and the synchronous version), enabling us to relate =L_=L to structural congruence. We also present some (un)decidability results that are related to the above separation properties for AL: the undecidability of =L_=L on MA and its decidability on the subcalculus.Comment: logical methods in computer science, 44 page

    The Tail-Recursive Fragment of Timed Recursive CTL

    Get PDF
    Timed Recursive CTL (TRCTL) was recently proposed as a merger of two extensions of the well-known branching-time logic CTL: Timed CTL on one hand is interpreted over real-time systems like timed automata, and Recursive CTL (RecCTL) on the other hand obtains high expressiveness through the introduction of a recursion operator. Model checking for the resulting logic is known to be 2-EXPTIME-complete. The aim of this paper is to investigate the possibility to obtain a fragment of lower complexity without losing too much expressive power. It is obtained by a syntactic property called "tail-recursiveness" that restricts the way that recursive formulas can be built. This restriction is known to decrease the complexity of model checking by half an exponential in the untimed setting. We show that this also works in the real-time world: model checking for the tail-recursive fragment of TRCTL is EXPSPACE-complete. The upper bound is obtained by a standard untiming construction via region graphs, and rests on the known complexity of tail-recursive fragments of higher-order modal logics. The lower bound is established by a reduction from a suitable tiling problem

    The Effects of Adding Reachability Predicates in Propositional Separation Logic

    Get PDF
    International audienceThe list segment predicate ls used in separation logic for verifying programs with pointers is well-suited to express properties on singly-linked lists. We study the effects of adding ls to the full proposi-tional separation logic with the separating conjunction and implication, which is motivated by the recent design of new fragments in which all these ingredients are used indifferently and verification tools start to handle the magic wand connective. This is a very natural extension that has not been studied so far. We show that the restriction without the separating implication can be solved in polynomial space by using an appropriate abstraction for memory states whereas the full extension is shown undecidable by reduction from first-order separation logic. Many variants of the logic and fragments are also investigated from the computational point of view when ls is added, providing numerous results about adding reachability predicates to propositional separation logic
    corecore